


boundquad2 Computes the boundary integral of the product of two quadratic basis functions Function int=boundquad2(g) calculates the boundary integral of the product of two quadratic basis function over the curve defined by the coordinates in g. INPUT g = global coordinates of the integration curve OUTPUT int = value of the integral


0001 function int=boundquad2(g); 0002 0003 %boundquad2 Computes the boundary integral of the product of two quadratic basis functions 0004 % Function int=boundquad2(g) calculates the boundary integral 0005 % of the product of two quadratic basis function over the curve defined by the coordinates in g. 0006 % 0007 % INPUT 0008 % 0009 % g = global coordinates of the integration curve 0010 % 0011 % OUTPUT 0012 % 0013 % int = value of the integral 0014 0015 % 10.5. 1996 P. Ronkanen and M. Vauhkonen 0016 % University of Kuopio, Department of Applied Physics, PO Box 1627, 0017 % FIN-70211 Kuopio, Finland, email: Marko.Vauhkonen@uku.fi 0018 0019 w=[5/18,8/18,5/18]; 0020 ip=[1/2-1/10*sqrt(15),1/2,1/2+1/10*sqrt(15)]; 0021 int=0; 0022 for ii=1:3 0023 S=[2*ip(ii)^2-3*ip(ii)+1; ... 0024 -4*ip(ii)^2+4*ip(ii); ... 0025 2*ip(ii)^2-ip(ii)]; 0026 dJt=sqrt((g(1,1)*(4*ip(ii)-3)+g(2,1)*(4-8*ip(ii))+g(3,1)*(4*ip(ii)-1))^2+ ... 0027 (g(1,2)*(4*ip(ii)-3)+g(2,2)*(4-8*ip(ii))+g(3,2)*(4*ip(ii)-1))^2); 0028 int=int+w(ii)*S*S'*dJt; 0029 end 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044