


electrlen Computes the length of the electrode in the case of isoparametric (quadratic) triangular element Function int=electrlen(g) computes the length of the electrode in the case of isoparametric triangular element The electrode is the curve defined by the coordinates in g. INPUT g = global coordinates of the integration curve OUTPUT int = value of the integral


0001 function int=electrlen(g); 0002 0003 %electrlen Computes the length of the electrode in the case of isoparametric (quadratic) triangular element 0004 % Function int=electrlen(g) computes the length of the electrode in the case of isoparametric triangular element 0005 % The electrode is the curve defined by the coordinates in g. 0006 % 0007 % INPUT 0008 % 0009 % g = global coordinates of the integration curve 0010 % 0011 % OUTPUT 0012 % 0013 % int = value of the integral 0014 0015 % 10.5. 1996 P. Ronkanen and M. Vauhkonen 0016 % University of Kuopio, Department of Applied Physics, PO Box 1627, 0017 % FIN-70211 Kuopio, Finland, email: Marko.Vauhkonen@uku.fi 0018 0019 0020 w=[1/2,1/2]; 0021 ip=[1/2-1/6*sqrt(3),1/2+1/6*sqrt(3)]; 0022 int=0; 0023 for ii=1:2 0024 dJt=sqrt((g(1,1)*(4*ip(ii)-3)+g(2,1)*(4-8*ip(ii))+g(3,1)*(4*ip(ii)-1))^2+ ... 0025 (g(1,2)*(4*ip(ii)-3)+g(2,2)*(4-8*ip(ii))+g(3,2)*(4*ip(ii)-1))^2); 0026 int=int+w(ii)*dJt; 0027 end 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037