0001 function ok= demo_real_test2
0002
0003
0004
0005 isOctave= exist('OCTAVE_VERSION');
0006
0007 datareal= 'datareal.mat';
0008 datacom= 'datacom.mat';
0009 drt= 'demo_real_test.mat';
0010 if isOctave
0011 datareal= file_in_loadpath(datareal);
0012 datacom= file_in_loadpath(datacom);
0013 drt = file_in_loadpath(drt);
0014 page_screen_output= 0;
0015 end
0016
0017
0018
0019 load(datareal,'vtx','simp');
0020
0021 demo_mdl.name = 'demo real model';
0022 demo_mdl.nodes= vtx;
0023 demo_mdl.elems= simp;
0024 demo_mdl.boundary= find_boundary( simp );
0025 demo_mdl.solve= 'np_fwd_solve';
0026 demo_mdl.jacobian= 'np_calc_jacobian';
0027 demo_mdl.system_mat= 'np_calc_system_mat';
0028
0029 clear vtx simp
0030
0031
0032
0033 load(datareal,'gnd_ind','elec','zc','protocol','no_pl');
0034 perm_sym= '{y}';
0035
0036 demo_mdl.gnd_node= gnd_ind;
0037 for i=1:length(zc)
0038 demo_mdl.electrode(i).z_contact= zc(i);
0039 demo_mdl.electrode(i).nodes= elec(i,:);
0040 end
0041
0042
0043 demo_mdl.np_fwd_solve.perm_sym = perm_sym;
0044
0045
0046
0047
0048 [I,Ib] = set_3d_currents(protocol, ...
0049 elec, ...
0050 demo_mdl.nodes, ...
0051 demo_mdl.gnd_node, ...
0052 no_pl);
0053
0054
0055
0056 [jnk,jnk,indH,indV,jnk] = get_3d_meas( ...
0057 elec, demo_mdl.nodes, ...
0058 zeros(size(I)), ...
0059 Ib, no_pl );
0060 n_elec= size(elec,1);
0061 n_meas= size(indH,1) / size(Ib,2);
0062 for i=1:size(Ib,2)
0063 demo_mdl.stimulation(i).stimulation= 'Amp';
0064 demo_mdl.stimulation(i).stim_pattern= Ib(:,i);
0065 idx= ( 1+ (i-1)*n_meas ):( i*n_meas );
0066 meas_pat = sparse( (1:n_meas)'*[1,1], ...
0067 indH( idx, : ), ...
0068 ones(n_meas,2)*[1,0;0,-1], ...
0069 n_meas, n_elec );
0070 demo_mdl.stimulation(i).meas_pattern= meas_pat;
0071 end
0072
0073 clear gnd_ind elec zc protocol no_pl I Ib
0074 clear indH indV indH_sz meas_pat idx jnk
0075
0076 demo_mdl= eidors_obj('fwd_model', demo_mdl);
0077
0078
0079
0080 homg_img.name = 'homogeneous image';
0081 homg_img.elem_data= ones( size(demo_mdl.elems,1) ,1);
0082 homg_img.fwd_model= demo_mdl;
0083
0084 homg_img = eidors_obj('image', homg_img);
0085
0086 homg_data=fwd_solve( demo_mdl, homg_img);
0087
0088
0089
0090 mat= ones( size(demo_mdl.elems,1) ,1);
0091 load( datacom ,'A','B')
0092 mat(A)= mat(A)+0.15;
0093 mat(B)= mat(B)-0.20;
0094
0095 inhomg_img.name = 'inhomogeneous image';
0096 inhomg_img.elem_data= mat;
0097 inhomg_img.fwd_model= demo_mdl;
0098 clear A B mat
0099 inhomg_img = eidors_obj('image', inhomg_img );
0100
0101 inhomg_data=fwd_solve( demo_mdl, inhomg_img);
0102
0103
0104
0105
0106 demo_inv.name= 'Nick Polydorides EIT inverse';
0107 demo_inv.solve= 'np_inv_solve';
0108 demo_inv.hyperparameter.value= 1e-4;
0109 demo_inv.R_prior= 'np_calc_image_prior';
0110 demo_inv.np_calc_image_prior.parameters= [3 1];
0111 demo_inv.jacobian_bkgnd.value= 1;
0112 demo_inv.reconst_type= 'difference';
0113 demo_inv.fwd_model= demo_mdl;
0114 demo_inv= eidors_obj('inv_model', demo_inv);
0115
0116
0117
0118 demo_img= inv_solve( demo_inv, homg_data, inhomg_data);
0119
0120
0121
0122 load(drt);
0123
0124 compare_tol( drt.voltageH, inhomg_data.meas, 'voltageH' )
0125 compare_tol( drt.sol, demo_img.elem_data, 'sol' )
0126
0127 J= calc_jacobian( demo_mdl, homg_img );
0128 Jcolsby100=J(:,1:100:size(J,2));
0129 compare_tol( drt.Jcolsby100, Jcolsby100, 'Jcolsby100' )
0130
0131
0132
0133
0134 ok=1;
0135
0136
0137 function compare_tol( cmp1, cmp2, errtext )
0138
0139 fprintf(2,'testing parameter: %s ...\n',errtext);
0140
0141 tol= 2e-4;
0142
0143 vd= mean(mean( abs(cmp1 - cmp2) ));
0144 vs= mean(mean( abs(cmp1) + abs(cmp2) ));
0145 if vd/vs > tol
0146 eidors_msg( ...
0147 'parameter %s exceeds tolerance %g (=%g)', errtext, tol, vd/vs, 1 );
0148 end
0149