0001 function ok= demo_real_test3
0002
0003
0004
0005
0006
0007 isOctave= exist('OCTAVE_VERSION');
0008
0009 datareal= 'datareal.mat';
0010 datacom= 'datacom.mat';
0011 drt= 'demo_real_test.mat';
0012 if isOctave
0013 datareal= file_in_loadpath(datareal);
0014 datacom= file_in_loadpath(datacom);
0015 drt = file_in_loadpath(drt);
0016 page_screen_output= 0;
0017 end
0018
0019
0020
0021 load(datareal,'vtx','simp');
0022
0023 demo_mdl= eidors_obj('model', 'Demo real model', ...
0024 'nodes', vtx, ...
0025 'elems', simp, ...
0026 'boundary', find_boundary( simp ), ...
0027 'solve', 'np_fwd_solve', ...
0028 'jacobian', 'np_calc_jacobian', ...
0029 'system_mat', 'np_calc_system_mat' );
0030
0031 clear vtx simp
0032
0033
0034
0035 load(datareal,'gnd_ind','elec','zc','protocol','no_pl');
0036 perm_sym= '{y}';
0037
0038 demo_mdl= eidors_obj('set', demo_mdl, 'gnd_node', gnd_ind);
0039
0040 for i=1:length(zc)
0041 demo_mdl.electrode(i).z_contact= zc(i);
0042 demo_mdl.electrode(i).nodes= elec(i,:);
0043 end
0044 demo_mdl.np_fwd_solve.perm_sym = perm_sym;
0045
0046 demo_mdl= eidors_obj('set', demo_mdl);
0047
0048
0049
0050
0051 [I,Ib] = set_3d_currents(protocol, ...
0052 elec, ...
0053 demo_mdl.nodes, ...
0054 demo_mdl.gnd_node, ...
0055 no_pl);
0056
0057
0058
0059 [jnk,jnk,indH,indV,jnk] = get_3d_meas( ...
0060 elec, demo_mdl.nodes, ...
0061 zeros(size(I)), ...
0062 Ib, no_pl );
0063 n_elec= size(elec,1);
0064 n_meas= size(indH,1) / size(Ib,2);
0065 for i=1:size(Ib,2)
0066 demo_mdl.stimulation(i).stimulation= 'Amp';
0067 demo_mdl.stimulation(i).stim_pattern= Ib(:,i);
0068 idx= ( 1+ (i-1)*n_meas ):( i*n_meas );
0069 meas_pat = sparse( (1:n_meas)'*[1,1], ...
0070 indH( idx, : ), ...
0071 ones(n_meas,2)*[1,0;0,-1], ...
0072 n_meas, n_elec );
0073 demo_mdl.stimulation(i).meas_pattern= meas_pat;
0074 end
0075
0076 clear gnd_ind elec zc protocol no_pl I Ib
0077 clear indH indV indH_sz meas_pat idx jnk
0078
0079 demo_mdl= eidors_obj('fwd_model', demo_mdl);
0080
0081
0082
0083 mat= ones( size(demo_mdl.elems,1) ,1);
0084
0085 homg_img= eidors_obj('image', 'homogeneous image', ...
0086 'elem_data', mat, ...
0087 'fwd_model', demo_mdl );
0088
0089 homg_data=fwd_solve( demo_mdl, homg_img);
0090
0091
0092
0093 load( datacom ,'A','B')
0094 mat(A)= mat(A)+0.15;
0095 mat(B)= mat(B)-0.20;
0096
0097 inhomg_img= eidors_obj('image', 'inhomogeneous image', ...
0098 'elem_data', mat, ...
0099 'fwd_model', demo_mdl );
0100 clear A B mat
0101 inhomg_img = eidors_obj('image', inhomg_img );
0102
0103 inhomg_data=fwd_solve( demo_mdl, inhomg_img);
0104
0105
0106
0107
0108 demo_inv= eidors_obj('inv_model', 'Nick Polydorides EIT inverse', ...
0109 'solve', 'np_inv_solve', ...
0110 'reconst_type', 'difference', ...
0111 'fwd_model', demo_mdl);
0112
0113 demo_inv.hyperparameter.value= 1e-4;
0114 demo_inv.R_prior= 'np_calc_image_prior';
0115 demo_inv.np_calc_image_prior.parameters= [3 1];
0116 demo_inv.jacobian_bkgnd.value= 1;
0117 demo_inv= eidors_obj('set', demo_inv);
0118
0119
0120
0121 demo_img= inv_solve( demo_inv, homg_data, inhomg_data);
0122
0123
0124
0125 load(drt);
0126
0127 compare_tol( drt.voltageH, inhomg_data.meas, 'voltageH' )
0128 compare_tol( drt.sol, demo_img.elem_data, 'sol' )
0129
0130 J= calc_jacobian( demo_mdl, homg_img );
0131 Jcolsby100=J(:,1:100:size(J,2));
0132 compare_tol( drt.Jcolsby100, Jcolsby100, 'Jcolsby100' )
0133
0134
0135
0136
0137 ok=1;
0138
0139
0140 function compare_tol( cmp1, cmp2, errtext )
0141
0142 fprintf(2,'testing parameter: %s ...\n',errtext);
0143
0144 tol= 2e-4;
0145
0146 vd= mean(mean( abs(cmp1 - cmp2) ));
0147 vs= mean(mean( abs(cmp1) + abs(cmp2) ));
0148 if vd/vs > tol
0149 eidors_msg( ...
0150 'parameter %s exceeds tolerance %g (=%g)', errtext, tol, vd/vs, 1 );
0151 end
0152