EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software |
EIDORS
(mirror) Main Documentation Tutorials − Image Reconst − Data Structures − Applications − FEM Modelling − GREIT − Old tutorials − Workshop Download Contrib Data GREIT Browse Docs Browse SVN News Mailing list (archive) FAQ Developer
|
GREIT Reconstruction ExamplesThis tutorial shows how EIDORS gives access to the GREIT v1.0 reconstruction matrix. (The v1.0 matrix is for circular tanks defined in the 2009 publication).Simulate 3D object% Simulate obj $Id: GREIT_examples01.m 2775 2011-07-14 17:21:55Z aadler $ fmdl = ng_mk_cyl_models([2,1,0.1],[16,1],[0.05]); fmdl.stimulation = mk_stim_patterns(16,1,[0,1],[0,1],{},1); % Homogeneous object imgh= mk_image( fmdl, 1 ); % Fwd Simulation vh = fwd_solve( imgh); % Target Object select_fcn = inline('(x-0.2).^2 + (y-0.5).^2 + (z-1).^2<0.1^2','x','y','z'); memb_frac = elem_select( imgh.fwd_model, select_fcn); imgt= mk_image( fmdl, 1 + memb_frac ); % Fwd Simulation vt = fwd_solve( imgt); % Add SNR 2.0 noise vn = add_noise(4, vt, vh); clf; show_fem(imgt); print_convert GREIT_examples01a.png Figure: Simulation Mesh and object Reconstruct (no noise)% Simulate obj $Id: GREIT_examples02.m 4839 2015-03-30 07:44:50Z aadler $ % GREIT v1 i_gr = mk_common_gridmdl('GREITc1'); show_fem( inv_solve( i_gr, vh, vt) ); axis equal; print_convert 'GREIT_examples02a.png' '-density 50'; % current GREIT recommendation opt.noise_figure = 0.5; opt.distr = 0; % best for cylinders i_grc = mk_GREIT_model(fmdl,.2,[],opt); show_fem( inv_solve( i_grc, vh, vt) ); axis equal; print_convert 'GREIT_examples02b.png' '-density 50'; % Sheffield Backprojection i_bp = mk_common_gridmdl('backproj'); show_fem( inv_solve( i_bp, vh, vt) ); axis equal; print_convert 'GREIT_examples02c.png' '-density 50'; % 2D Gauss Newton Inverse i_gn = mk_common_model('d2c2',16); i_gn.hyperparameter.value = 0.1; i_gn.fwd_model = mdl_normalize(i_gn.fwd_model, 1); % i_gn.RtR_prior = @prior_gaussian_HPF; show_fem( inv_solve( i_gn, vh, vt) ); axis equal; print_convert 'GREIT_examples02d.png' '-density 50'; % Test the Noise Figure of the GN inverse => 0.5 % i_gn.hyperparameter.tgt_data.meas_t1 = vh; % i_gn.hyperparameter.tgt_data.meas_t2 = vt; % calc_noise_figure(i_gn) Figure: Reconstruction (no noise) with (from left to right) GREIT v1, current GREIT recommendations, Sheffield Backprojection, Gauss Newton Inverse Reconstruct (added noise)% Simulate obj $Id: GREIT_examples03.m 4823 2015-03-29 15:17:16Z bgrychtol-ipa $ % GREIT v1 show_fem( inv_solve( i_gr, vh, vn) ); axis equal; print_convert 'GREIT_examples03a.png' '-density 50'; % current GREIT show_fem( inv_solve( i_grc, vh, vn) ); axis equal; print_convert 'GREIT_examples03b.png' '-density 50'; % Sheffield Backprojection show_fem( inv_solve( i_bp, vh, vn) ); axis equal; print_convert 'GREIT_examples03c.png' '-density 50'; % 2D Gauss Newton Inverse show_fem( inv_solve( i_gn, vh, vn) ); axis equal; print_convert 'GREIT_examples03d.png' '-density 50'; Figure: Reconstruction (SNR=0.5 noise) with (from left to right) GREIT v1, Current GREIT, Sheffield Backprojection, Gauss Newton Inverse |
Last Modified: $Date: 2017-02-28 13:12:08 -0500 (Tue, 28 Feb 2017) $ by $Author: aadler $