EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software |
EIDORS
(mirror) Main Documentation Tutorials − Image Reconst − Data Structures − Applications − FEM Modelling − GREIT − Old tutorials − Workshop Download Contrib Data GREIT Browse Docs Browse SVN News Mailing list (archive) FAQ Developer
|
Simulating Geophysical measurements around a boreholeCreate 3D FEM model of the gallery% Create 3D model of a tunnel $Id: tunnelsim01.m 6455 2022-12-07 00:37:14Z aadler $ N_elec = 16; shape_str = ['solid incyl = cylinder (0,0,0; 1,0,0; 1) -maxh=1.0; \n', ... 'solid farcyl = cylinder (0,0,0; 1,0,0; 5) -maxh=5.0; \n' ... 'solid pl1 = plane(-5,0,0;-1,0,0);\n' ... 'solid pl2 = plane(5,0,0; 1,0,0);\n' ... 'solid mainobj= pl1 and pl2 and farcyl and not incyl;\n']; th= linspace(0,2*pi,N_elec+1)'; th(end)=[]; cth= cos(th); sth=sin(th); zth= zeros(size(th)); elec_pos = [zth, cth, sth, zth cth, sth]; elec_shape=[0.05]; elec_obj = 'incyl'; fmdl = ng_mk_gen_models(shape_str, elec_pos, elec_shape, elec_obj); subplot(221); show_fem( fmdl ); view(90,0); print_convert tunnelsim01a.png view( 0,0); print_convert tunnelsim01b.png crop_model([], inline('x>=0.5','x','y','z')) crop_model([], inline('x<=-0.5','x','y','z')) crop_model([], inline('(y.^2+z.^2)>=1.3^2','x','y','z')) view(-90,50); axis tight; print_convert tunnelsim01c.png Figure: 3D FEM of gallery from two viewing angles, and a cropped model showing the electrodes Place a simulated contrast% Create 3D model of a tunnel $Id: tunnelsim02.m 3273 2012-06-30 18:00:35Z aadler $ % Simulation protocol. stim = mk_stim_patterns(N_elec, 1, [0,4], [0,4], {'no_meas_current'},1); fmdl.stimulation = stim; cond_mdl = .1; % in S/m units img = mk_image( fmdl, cond_mdl); vs_h = fwd_solve( img); img.elem_data = cond_mdl*(1 + mk_c2f_circ_mapping(fmdl, [0.25;1.4;0;0.2]) ); vs_i = fwd_solve( img); show_fem(img); ylim(2*[-1,1]); zlim(2*[-1,1]); view(90,0 ); print_convert tunnelsim02a.png view( 0,90); print_convert tunnelsim02b.png Figure: 3D FEM of gallery and contrast from two viewing angles. Reconstruct images (using full 3D reconstruction)Using the full 3D model, this is an extremely slow reconstruction process; it is also not really recommended since the model size is much too small near the electrodes.% Create 3D model of a tunnel $Id: tunnelsim03.m 7116 2024-12-29 13:35:10Z aadler $ % Reconstruct entire image (slow) imdl = mk_common_model('a2c2',N_elec); % placeholder, then change fmdl imdl.fwd_model = fmdl; imdl.jacobian_bkgnd.value = cond_mdl; imgr = inv_solve( imdl, vs_h, vs_i ); imgr.calc_colours.npoints= 128; slices = [0.0,inf,inf,1,1; 0.5,inf,inf,2,1; 1.0,inf,inf,3,1]; subplot(211); show_slices(imgr,slices); print_convert tunnelsim03a.png Figure: Slices Reconstructed at x=0.0, x=0.5, and x=1.0. Reconstruct images (on a 2D simple slice)Here we use a slice from a filled 2D circular model. This means that the smoothing prior will be allowed to "fill" through the centre, resulting in image content where we don't expect it to be.% Create 3D model of a tunnel $Id: tunnelsim04.m 4839 2015-03-30 07:44:50Z aadler $ % Reconstruct to a slice via coarse2fine % Use a simple circular model without hole. % Note that this will give the wrong electrode posns imdl = mk_common_model('d2c2',N_elec); imdl.rec_model = imdl.fwd_model; imdl.rec_model.nodes = imdl.rec_model.nodes*5; % Enlarge imdl.fwd_model = fmdl; imdl.jacobian_bkgnd.value = cond_mdl; % Do coarse2fine mapping. Rotate mdl to z dirn f1mdl = fmdl; f1mdl.nodes = f1mdl.nodes(:,[2,3,1]); f1mdl.mk_coarse_fine_mapping.z_depth = 1; c2f= mk_coarse_fine_mapping( f1mdl, imdl.rec_model); imdl.fwd_model.coarse2fine = c2f; imdl.hyperparameter.value = 0.3; imgr = inv_solve( imdl, vs_h, vs_i ); imgr.calc_colours.npoints= 128; subplot(221); show_slices(imgr); print_convert tunnelsim04a.png show_fem(imgr); print_convert tunnelsim04b.png Figure: Slices 2D slices shown in two configurations Reconstruct images (on a 2D conforming geometry)Here we use a slice created to conform to the specified geometry.% Create 2D model of a tunnel $Id: tunnelsim05.m 2361 2010-11-08 10:50:48Z aadler $ extra={'ball', 'solid ball = sphere(0,0,0;1) -maxh=0.25;'}; cmdl= ng_mk_cyl_models([0,15,3],[0],[0.1,0,0.05],extra); show_fem(cmdl); print_convert tunnelsim05a.png show_fem(cmdl); axis(2*[-1,1,-1,1]); print_convert tunnelsim05b.png Figure: 2D FEM model for reconstruction and zoom % Create 3D model of a tunnel $Id: tunnelsim06.m 4839 2015-03-30 07:44:50Z aadler $ imdl = select_imdl( fmdl, {'Basic GN dif'}); imdl.rec_model = cmdl; imdl.jacobian_bkgnd.value = cond_mdl; % Do coarse2fine mapping. Rotate mdl to z dirn f1mdl = fmdl; f1mdl.nodes = f1mdl.nodes(:,[2,3,1]); f1mdl.mk_coarse_fine_mapping.z_depth = 1; c2f= mk_coarse_fine_mapping( f1mdl, cmdl); imdl.fwd_model.coarse2fine = c2f; imdl.hyperparameter.value = 0.3; imgr = inv_solve( imdl, vs_h, vs_i ); imgr.calc_colours.npoints= 128; subplot(221); show_slices(imgr); print_convert tunnelsim06a.png show_fem(imgr); print_convert tunnelsim06b.png show_fem(imgr); axis(3*[-1,1,-1,1]); print_convert tunnelsim06c.png Figure: Reconstructed images |
Last Modified: $Date: 2017-02-28 13:12:08 -0500 (Tue, 28 Feb 2017) $ by $Author: aadler $