0001 ########################################################################
0002 ##
0003 ## Copyright (C) 2019-2022 The Octave Project Developers
0004 ##
0005 ## Added to EIDORS 2022 by Andy Adler
0006 ## -- modifications to fix matlab compatibilities
0007 ##
0008 ## See the file COPYRIGHT.md in the top-level directory of this
0009 ## distribution or <https://octave.org/copyright/>.
0010 ##
0011 ## This file is part of Octave.
0012 ##
0013 ## Octave is free software: you can redistribute it and/or modify it
0014 ## under the terms of the GNU General Public License as published by
0015 ## the Free Software Foundation, either version 3 of the License, or
0016 ## (at your option) any later version.
0017 ##
0018 ## Octave is distributed in the hope that it will be useful, but
0019 ## WITHOUT ANY WARRANTY; without even the implied warranty of
0020 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
0021 ## GNU General Public License for more details.
0022 ##
0023 ## You should have received a copy of the GNU General Public License
0024 ## along with Octave; see the file COPYING. If not, see
0025 ## <https://www.gnu.org/licenses/>.
0026 ##
0027 ########################################################################
0028
0029 ## -*- texinfo -*-
0030 ## @deftypefn {} {@var{xy} =} stream2 (@var{x}, @var{y}, @var{u}, @var{v}, @var{sx}, @var{sy})
0031 ## @deftypefnx {} {@var{xy} =} stream2 (@var{u}, @var{v}, @var{sx}, @var{sy})
0032 ## @deftypefnx {} {@var{xy} =} stream2 (@dots{}, @var{options})
0033 ## Compute 2-D streamline data.
0034 ##
0035 ## Calculates streamlines of a vector field given by @code{[@var{u}, @var{v}]}.
0036 ## The vector field is defined over a rectangular grid given by
0037 ## @code{[@var{x}, @var{y}]}. The streamlines start at the seed points
0038 ## @code{[@var{sx}, @var{sy}]}. The returned value @var{xy} contains a cell
0039 ## array of vertex arrays. If the starting point is outside the vector field,
0040 ## @code{[]} is returned.
0041 ##
0042 ## The input parameter @var{options} is a 2-D vector of the form
0043 ## @code{[@var{stepsize}, @var{max_vertices}]}. The first parameter
0044 ## specifies the step size used for trajectory integration (default 0.1). A
0045 ## negative value is allowed which will reverse the direction of integration.
0046 ## The second parameter specifies the maximum number of segments used to
0047 ## create a streamline (default 10,000).
0048 ##
0049 ## The return value @var{xy} is a @nospell{nverts x 2} matrix containing the
0050 ## coordinates of the field line segments.
0051 ##
0052 ## Example:
0053 ##
0054 ## @example
0055 ## @group
0056 ## [x, y] = meshgrid (0:3);
0057 ## u = 2 * x;
0058 ## v = y;
0059 ## xy = stream2 (x, y, u, v, 1.0, 0.5);
0060 ## @end group
0061 ## @end example
0062 ##
0063 ## @seealso{streamline, stream3}
0064 ## @end deftypefn
0065
0066 ## References:
0067 ##
0068 ## @article{
0069 ## title = {Particle Tracing Algorithms for 3D Curvilinear Grids},
0070 ## year = {2000},
0071 ## author = {Nielson, Gregory and Uller, H. and Sadarjoen, I. and Walsum, Theo and Hin, Andrea and Post, Frits}
0072 ## }
0073 ##
0074 ## @article{
0075 ## title = {Sources of error in the graphical analysis of CFD results},
0076 ## publisher = {Journal of Scientific Computing},
0077 ## year = {1988},
0078 ## volume = {3},
0079 ## number = {2},
0080 ## pages = {149--164},
0081 ## author = {Buning, Pieter G.},
0082 ## }
0083
0084 function xy = stream2 (varargin)
0085
0086 options = [];
0087 switch (numel (varargin))
0088 case {4,5}
0089 if (numel (varargin) == 4)
0090 [u, v, spx, spy] = varargin{:};
0091 else
0092 [u, v, spx, spy, options] = varargin{:};
0093 endif
0094 [m, n] = size (u);
0095 [x, y] = meshgrid (1:n, 1:m);
0096 case 6
0097 [x, y, u, v, spx, spy] = varargin{:};
0098 [x, u] = fix_to_matrix(x, u, 1);
0099 [y, v] = fix_to_matrix(y, v, 2);
0100
0101 case 7
0102 [x, y, u, v, spx, spy, options] = varargin{:};
0103 [x, u] = fix_to_matrix(x, u, 1);
0104 [y, v] = fix_to_matrix(y, v, 2);
0105 otherwise
0106 print_usage ();
0107 endswitch
0108
0109 stepsize = 0.1;
0110 max_vertices = 10_000;
0111 if (! isempty (options))
0112 switch (numel (options))
0113 case 1
0114 stepsize = options(1);
0115 case 2
0116 stepsize = options(1);
0117 max_vertices = options(2);
0118 otherwise
0119 error ("stream2: OPTIONS must be a 1- or 2-element vector");
0120 endswitch
0121
0122 if (! isreal (stepsize) || stepsize == 0)
0123 error ("stream2: STEPSIZE must be a real scalar != 0");
0124 endif
0125 if (! isreal (max_vertices) || max_vertices < 1)
0126 error ("stream2: MAX_VERTICES must be an integer > 0");
0127 endif
0128 max_vertices = fix (max_vertices);
0129 endif
0130
0131 if (! (size_equal (u, v, x, y) && size_equal (spx, spy)))
0132 error ("stream2: matrix dimensions must match");
0133 endif
0134 if (iscomplex (u) || iscomplex (v) || iscomplex (x) || iscomplex (y)
0135 || iscomplex (spx) || iscomplex (spy))
0136 error ("stream2: all inputs must be real-valued");
0137 endif
0138
0139 gx = x(1,:);
0140 gy = y(:,1).';
0141
0142 ## Jacobian Matrix
0143 dx = diff (gx);
0144 dy = diff (gy);
0145 ## "<" used to check if the mesh is ascending
0146 if (any (dx <= 0) || any (dy <= 0)
0147 || any (isnan (dx)) || any (isnan (dy)))
0148 error ("stream2: non-monotonically increasing or NaN values found in mesh");
0149 endif
0150 tx = 1 ./ dx;
0151 ty = 1 ./ dy;
0152 ## "Don't cares" used for handling points located on the border
0153 tx(end + 1) = 0;
0154 ty(end + 1) = 0;
0155 dx(end + 1) = 0;
0156 dy(end + 1) = 0;
0157
0158 px = spx(:);
0159 py = spy(:);
0160
0161 for nseed = 1 : numel (px)
0162
0163 xp = px(nseed);
0164 yp = py(nseed);
0165 idx = find (diff (gx <= xp), 1);
0166 if (gx(end) == xp)
0167 idx = numel (gx);
0168 endif
0169 idy = find (diff (gy <= yp), 1);
0170 if (gy(end) == yp)
0171 idy = numel (gy);
0172 endif
0173
0174 if (isempty (idx) || isempty (idy))
0175 xy{nseed} = [];
0176 else
0177 ## Transform seed from P coordinates to C coordinates
0178 zeta = (idx - 1) + (xp - gx(idx)) * tx(idx);
0179 xi = (idy - 1) + (yp - gy(idy)) * ty(idy);
0180
0181 C = __streameuler2d__ (u, v, tx, ty, zeta, xi, stepsize, max_vertices);
0182
0183 ## Transform from C coordinates to P coordinates
0184 idu = floor (C(:,1));
0185 idv = floor (C(:,2));
0186 xy{nseed} = [gx(idu + 1).' + (C(:,1) - idu).*(dx(idu + 1).'), ...
0187 gy(idv + 1).' + (C(:,2) - idv).*(dy(idv + 1).')];
0188 endif
0189
0190 endfor
0191
0192 endfunction
0193
0194 # check if x is vector. Make full size
0195 # axix (=1 for x and =2 for y)
0196 function [x, u] = fix_to_matrix(x, u, axis);
0197 if size_equal(x,u)
0198 return
0199 endif
0200 if all(size(x)>1)
0201 return
0202 endif
0203
0204 dirn = diff( x );
0205 if all(dirn>0)
0206 doflip = false;
0207 elseif all(dirn<0)
0208 doflip = true;
0209 else
0210 error ("stream2: axis not monotonic");
0211 end
0212
0213 # extend x in the rows
0214 x = x(:).';
0215 x = x(ones(size(u,axis),1),:);
0216 if axis==2
0217 x = x.';
0218 endif
0219
0220 if doflip
0221 x = flip( x, 3-axis );
0222 u = flip( u, 3-axis );
0223 endif
0224 endfunction
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246 ## Test input validation
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268 ## FIXME: vectors representing x, y mesh are not accepted.
0269
0270
0271
0272
0273
0274