fminbnd

PURPOSE ^

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 ########################################################################
0002 ##
0003 ## Copyright (C) 2008-2022 The Octave Project Developers
0004 ##
0005 ## See the file COPYRIGHT.md in the top-level directory of this
0006 ## distribution or <https://octave.org/copyright/>.
0007 ##
0008 ## This file is part of Octave.
0009 ##
0010 ## Octave is free software: you can redistribute it and/or modify it
0011 ## under the terms of the GNU General Public License as published by
0012 ## the Free Software Foundation, either version 3 of the License, or
0013 ## (at your option) any later version.
0014 ##
0015 ## Octave is distributed in the hope that it will be useful, but
0016 ## WITHOUT ANY WARRANTY; without even the implied warranty of
0017 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0018 ## GNU General Public License for more details.
0019 ##
0020 ## You should have received a copy of the GNU General Public License
0021 ## along with Octave; see the file COPYING.  If not, see
0022 ## <https://www.gnu.org/licenses/>.
0023 ##
0024 ########################################################################
0025 
0026 ## -*- texinfo -*-
0027 ## @deftypefn  {} {@var{x} =} fminbnd (@var{fun}, @var{a}, @var{b})
0028 ## @deftypefnx {} {@var{x} =} fminbnd (@var{fun}, @var{a}, @var{b}, @var{options})
0029 ## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fminbnd (@dots{})
0030 ## Find a minimum point of a univariate function.
0031 ##
0032 ## @var{fun} is a function handle, inline function, or string containing the
0033 ## name of the function to evaluate.
0034 ##
0035 ## The starting interval is specified by @var{a} (left boundary) and @var{b}
0036 ## (right boundary).  The endpoints must be finite.
0037 ##
0038 ## @var{options} is a structure specifying additional parameters which
0039 ## control the algorithm.  Currently, @code{fminbnd} recognizes these options:
0040 ## @qcode{"Display"}, @qcode{"FunValCheck"}, @qcode{"MaxFunEvals"},
0041 ## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, @qcode{"TolX"}.
0042 ##
0043 ## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
0044 ## before optimization is halted.  The default value is 500.
0045 ## The value must be a positive integer.
0046 ##
0047 ## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
0048 ## before optimization is halted.  The default value is 500.
0049 ## The value must be a positive integer.
0050 ##
0051 ## @qcode{"TolX"} specifies the termination tolerance for the solution @var{x}.
0052 ## The default is @code{1e-4}.
0053 ##
0054 ## For a description of the other options,
0055 ## @pxref{XREFoptimset,,@code{optimset}}.
0056 ## To initialize an options structure with default values for @code{fminbnd}
0057 ## use @code{options = optimset ("fminbnd")}.
0058 ##
0059 ## On exit, the function returns @var{x}, the approximate minimum point, and
0060 ## @var{fval}, the function evaluated @var{x}.
0061 ##
0062 ## The third output @var{info} reports whether the algorithm succeeded and may
0063 ## take one of the following values:
0064 ##
0065 ## @itemize
0066 ## @item 1
0067 ## The algorithm converged to a solution.
0068 ##
0069 ## @item 0
0070 ## Iteration limit (either @code{MaxIter} or @code{MaxFunEvals}) exceeded.
0071 ##
0072 ## @item -1
0073 ## The algorithm was terminated by a user @code{OutputFcn}.
0074 ## @end itemize
0075 ##
0076 ## Programming Notes: The search for a minimum is restricted to be in the
0077 ## finite interval bound by @var{a} and @var{b}.  If you have only one initial
0078 ## point to begin searching from then you will need to use an unconstrained
0079 ## minimization algorithm such as @code{fminunc} or @code{fminsearch}.
0080 ## @code{fminbnd} internally uses a Golden Section search strategy.
0081 ## @seealso{fzero, fminunc, fminsearch, optimset}
0082 ## @end deftypefn
0083 
0084 ## This is patterned after opt/fmin.f from Netlib, which in turn is taken from
0085 ## Richard Brent: Algorithms For Minimization Without Derivatives,
0086 ## Prentice-Hall (1973)
0087 
0088 ## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
0089 ## PKG_ADD: [~] = __all_opts__ ("fminbnd");
0090 
0091 ## Added ability to pass extra params to fn
0092 ## A Adler, Dec 2022
0093 ## This was submitted to octave as https://savannah.gnu.org/bugs/?65551
0094 ## However, it is marked as "Won't fix". We thus need to keep overloads
0095 
0096 function [x, fval, info, output] = fminbnd (fun, a, b, options = struct (), varargin = {})
0097 
0098   ## Get default options if requested.
0099   if (nargin == 1 && ischar (fun) && strcmp (fun, "defaults"))
0100     x = struct ("Display", "notify", "FunValCheck", "off",
0101                 "MaxFunEvals", 500, "MaxIter", 500,
0102                 "OutputFcn", [], "TolX", 1e-4);
0103     return;
0104   endif
0105 
0106   if (nargin < 2)
0107     print_usage ();
0108   endif
0109 
0110   if (a > b)
0111     error ("Octave:invalid-input-arg",
0112            "fminbnd: the lower bound cannot be greater than the upper one");
0113   endif
0114 
0115   if (ischar (fun))
0116     fun = str2func (fun);
0117   endif
0118 
0119   displ = optimget (options, "Display", "notify");
0120   funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
0121   outfcn = optimget (options, "OutputFcn");
0122   tolx = optimget (options, "TolX", 1e-4);
0123   maxiter = optimget (options, "MaxIter", 500);
0124   maxfev = optimget (options, "MaxFunEvals", 500);
0125 
0126   if (funvalchk)
0127     ## Replace fun with a guarded version.
0128     fun = @(x) guarded_eval (fun, x, varargin{:});
0129   endif
0130 
0131   ## The default exit flag if exceeded number of iterations.
0132   info = 0;
0133   niter = 0;
0134   nfev = 0;
0135 
0136   c = 0.5*(3 - sqrt (5));
0137   v = a + c*(b-a);
0138   w = x = v;
0139   e = 0;
0140   fv = fw = fval = fun (x, varargin{:});
0141   nfev += 1;
0142 
0143   if (isa (a, "single") || isa (b, "single") || isa (fval, "single"))
0144     sqrteps = eps ("single");
0145   else
0146     sqrteps = eps ("double");
0147   endif
0148 
0149   ## Only for display purposes.
0150   iter(1).funccount = nfev;
0151   iter(1).x = x;
0152   iter(1).fx = fval;
0153 
0154   while (niter < maxiter && nfev < maxfev)
0155     xm = 0.5*(a+b);
0156     ## FIXME: the golden section search can actually get closer than sqrt(eps)
0157     ## sometimes.  Sometimes not, it depends on the function.  This is the
0158     ## strategy from the Netlib code.  Something smarter would be good.
0159     tol = 2 * sqrteps * abs (x) + tolx / 3;
0160     if (abs (x - xm) <= (2*tol - 0.5*(b-a)))
0161       info = 1;
0162       break;
0163     endif
0164 
0165     if (abs (e) > tol)
0166       dogs = false;
0167       ## Try inverse parabolic step.
0168       iter(niter+1).procedure = "parabolic";
0169 
0170       r = (x - w)*(fval - fv);
0171       q = (x - v)*(fval - fw);
0172       p = (x - v)*q - (x - w)*r;
0173       q = 2*(q - r);
0174       p *= -sign (q);
0175       q = abs (q);
0176       r = e;
0177       e = d;
0178 
0179       if (abs (p) < abs (0.5*q*r) && p > q*(a-x) && p < q*(b-x))
0180         ## The parabolic step is acceptable.
0181         d = p / q;
0182         u = x + d;
0183 
0184         ## f must not be evaluated too close to ax or bx.
0185         if (min (u-a, b-u) < 2*tol)
0186           d = tol * (sign (xm - x) + (xm == x));
0187         endif
0188       else
0189         dogs = true;
0190       endif
0191     else
0192       dogs = true;
0193     endif
0194     if (dogs)
0195       ## Default to golden section step.
0196 
0197       ## WARNING: This is also the "initial" procedure following MATLAB
0198       ## nomenclature.  After the loop we'll fix the string for the first step.
0199       iter(niter+1).procedure = "golden";
0200 
0201       e = ifelse (x >= xm, a - x, b - x);
0202       d = c * e;
0203     endif
0204 
0205     ## f must not be evaluated too close to x.
0206     u = x + max (abs (d), tol) * (sign (d) + (d == 0));
0207     fu = fun (u, varargin{:});
0208 
0209     niter += 1;
0210 
0211     iter(niter).funccount = nfev++;
0212     iter(niter).x = u;
0213     iter(niter).fx = fu;
0214 
0215     ## update a, b, v, w, and x
0216 
0217     if (fu < fval)
0218       if (u < x)
0219         b = x;
0220       else
0221         a = x;
0222       endif
0223       v = w; fv = fw;
0224       w = x; fw = fval;
0225       x = u; fval = fu;
0226     else
0227       ## The following if-statement was originally executed even if fu == fval.
0228       if (u < x)
0229         a = u;
0230       else
0231         b = u;
0232       endif
0233       if (fu <= fw || w == x)
0234         v = w; fv = fw;
0235         w = u; fw = fu;
0236       elseif (fu <= fv || v == x || v == w)
0237         v = u;
0238         fv = fu;
0239       endif
0240     endif
0241 
0242     ## If there's an output function, use it now.
0243     if (! isempty (outfcn))
0244       optv.funccount = nfev;
0245       optv.fval = fval;
0246       optv.iteration = niter;
0247       if (outfcn (x, optv, "iter"))
0248         info = -1;
0249         break;
0250       endif
0251     endif
0252   endwhile
0253 
0254   ## Fix the first step procedure.
0255   iter(1).procedure = "initial";
0256 
0257   ## Handle the "Display" option
0258   switch (displ)
0259     case "iter"
0260       print_formatted_table (iter);
0261       print_exit_msg (info, struct ("TolX", tolx, "fx", fval));
0262     case "notify"
0263       if (info == 0)
0264         print_exit_msg (info, struct ("fx",fval));
0265       endif
0266     case "final"
0267       print_exit_msg (info, struct ("TolX", tolx, "fx", fval));
0268     case "off"
0269       "skip";
0270     otherwise
0271       warning ("fminbnd: unknown option for Display: '%s'", displ);
0272   endswitch
0273 
0274   output.iterations = niter;
0275   output.funcCount = nfev;
0276   output.algorithm = "golden section search, parabolic interpolation";
0277   output.bracket = [a, b];
0278   ## FIXME: bracketf possibly unavailable.
0279 
0280 endfunction
0281 
0282 ## A helper function that evaluates a function and checks for bad results.
0283 function fx = guarded_eval (fun, x)
0284 
0285   fx = fun (x);
0286   fx = fx(1);
0287   if (! isreal (fx))
0288     error ("Octave:fmindbnd:notreal", "fminbnd: non-real value encountered");
0289   elseif (isnan (fx))
0290     error ("Octave:fmindbnd:isnan", "fminbnd: NaN value encountered");
0291   endif
0292 
0293 endfunction
0294 
0295 ## A hack for printing a formatted table
0296 function print_formatted_table (table)
0297   printf ("\n Func-count     x          f(x)         Procedure\n");
0298   for row=table
0299     printf ("%5.5s        %7.7s    %8.8s\t%s\n",
0300             int2str (row.funccount), num2str (row.x,"%.5f"),
0301             num2str (row.fx,"%.6f"), row.procedure);
0302   endfor
0303   printf ("\n");
0304 endfunction
0305 
0306 ## Print either a success termination message or bad news
0307 function print_exit_msg (info, opt=struct ())
0308 
0309   printf ("");
0310   switch (info)
0311     case 1
0312       printf ("Optimization terminated:\n");
0313       printf (" the current x satisfies the termination criteria using OPTIONS.TolX of %e\n", opt.TolX);
0314     case 0
0315       printf ("Exiting: Maximum number of iterations has been exceeded\n");
0316       printf ("         - increase MaxIter option.\n");
0317       printf ("         Current function value: %.6f\n", opt.fx);
0318     case -1
0319       "FIXME"; # FIXME: what's the message MATLAB prints for this case?
0320     otherwise
0321       error ("fminbnd: internal error, info return code was %d", info);
0322   endswitch
0323   printf ("\n");
0324 
0325 endfunction
0326 
0327 
0328 %!shared opt0
0329 %! opt0 = optimset ("tolx", 0);
0330 %!assert (fminbnd (@cos, pi/2, 3*pi/2, opt0), pi, 10*sqrt (eps))
0331 %!assert (fminbnd (@(x) (x - 1e-3)^4, -1, 1, opt0), 1e-3, 10e-3*sqrt (eps))
0332 %!assert (fminbnd (@(x) abs (x-1e7), 0, 1e10, opt0), 1e7, 10e7*sqrt (eps))
0333 %!assert (fminbnd (@(x) x^2 + sin (2*pi*x), 0.4, 1, opt0), fzero (@(x) 2*x + 2*pi*cos (2*pi*x), [0.4, 1], opt0), sqrt (eps))
0334 %!assert (fminbnd (@(x) x > 0.3, 0, 1) < 0.3)
0335 %!assert (fminbnd (@(x) sin (x), 0, 0), 0, eps)
0336 
0337 %!error <lower bound cannot be greater> fminbnd (@(x) sin (x), 0, -pi)

Generated on Sun 29-Dec-2024 11:41:59 by m2html © 2005