fminbnd

PURPOSE ^

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 ########################################################################
0002 ##
0003 ## Copyright (C) 2008-2022 The Octave Project Developers
0004 ##
0005 ## See the file COPYRIGHT.md in the top-level directory of this
0006 ## distribution or <https://octave.org/copyright/>.
0007 ##
0008 ## This file is part of Octave.
0009 ##
0010 ## Octave is free software: you can redistribute it and/or modify it
0011 ## under the terms of the GNU General Public License as published by
0012 ## the Free Software Foundation, either version 3 of the License, or
0013 ## (at your option) any later version.
0014 ##
0015 ## Octave is distributed in the hope that it will be useful, but
0016 ## WITHOUT ANY WARRANTY; without even the implied warranty of
0017 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0018 ## GNU General Public License for more details.
0019 ##
0020 ## You should have received a copy of the GNU General Public License
0021 ## along with Octave; see the file COPYING.  If not, see
0022 ## <https://www.gnu.org/licenses/>.
0023 ##
0024 ########################################################################
0025 
0026 ## -*- texinfo -*-
0027 ## @deftypefn  {} {@var{x} =} fminbnd (@var{fun}, @var{a}, @var{b})
0028 ## @deftypefnx {} {@var{x} =} fminbnd (@var{fun}, @var{a}, @var{b}, @var{options})
0029 ## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fminbnd (@dots{})
0030 ## Find a minimum point of a univariate function.
0031 ##
0032 ## @var{fun} is a function handle, inline function, or string containing the
0033 ## name of the function to evaluate.
0034 ##
0035 ## The starting interval is specified by @var{a} (left boundary) and @var{b}
0036 ## (right boundary).  The endpoints must be finite.
0037 ##
0038 ## @var{options} is a structure specifying additional parameters which
0039 ## control the algorithm.  Currently, @code{fminbnd} recognizes these options:
0040 ## @qcode{"Display"}, @qcode{"FunValCheck"}, @qcode{"MaxFunEvals"},
0041 ## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, @qcode{"TolX"}.
0042 ##
0043 ## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
0044 ## before optimization is halted.  The default value is 500.
0045 ## The value must be a positive integer.
0046 ##
0047 ## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
0048 ## before optimization is halted.  The default value is 500.
0049 ## The value must be a positive integer.
0050 ##
0051 ## @qcode{"TolX"} specifies the termination tolerance for the solution @var{x}.
0052 ## The default is @code{1e-4}.
0053 ##
0054 ## For a description of the other options,
0055 ## @pxref{XREFoptimset,,@code{optimset}}.
0056 ## To initialize an options structure with default values for @code{fminbnd}
0057 ## use @code{options = optimset ("fminbnd")}.
0058 ##
0059 ## On exit, the function returns @var{x}, the approximate minimum point, and
0060 ## @var{fval}, the function evaluated @var{x}.
0061 ##
0062 ## The third output @var{info} reports whether the algorithm succeeded and may
0063 ## take one of the following values:
0064 ##
0065 ## @itemize
0066 ## @item 1
0067 ## The algorithm converged to a solution.
0068 ##
0069 ## @item 0
0070 ## Iteration limit (either @code{MaxIter} or @code{MaxFunEvals}) exceeded.
0071 ##
0072 ## @item -1
0073 ## The algorithm was terminated by a user @code{OutputFcn}.
0074 ## @end itemize
0075 ##
0076 ## Programming Notes: The search for a minimum is restricted to be in the
0077 ## finite interval bound by @var{a} and @var{b}.  If you have only one initial
0078 ## point to begin searching from then you will need to use an unconstrained
0079 ## minimization algorithm such as @code{fminunc} or @code{fminsearch}.
0080 ## @code{fminbnd} internally uses a Golden Section search strategy.
0081 ## @seealso{fzero, fminunc, fminsearch, optimset}
0082 ## @end deftypefn
0083 
0084 ## This is patterned after opt/fmin.f from Netlib, which in turn is taken from
0085 ## Richard Brent: Algorithms For Minimization Without Derivatives,
0086 ## Prentice-Hall (1973)
0087 
0088 ## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
0089 ## PKG_ADD: [~] = __all_opts__ ("fminbnd");
0090 
0091 ## Added ability to pass extra params to fn
0092 ## A Adler, Dec 2022
0093 
0094 function [x, fval, info, output] = fminbnd (fun, a, b, options = struct (), varargin = {})
0095 
0096   ## Get default options if requested.
0097   if (nargin == 1 && ischar (fun) && strcmp (fun, "defaults"))
0098     x = struct ("Display", "notify", "FunValCheck", "off",
0099                 "MaxFunEvals", 500, "MaxIter", 500,
0100                 "OutputFcn", [], "TolX", 1e-4);
0101     return;
0102   endif
0103 
0104   if (nargin < 2)
0105     print_usage ();
0106   endif
0107 
0108   if (a > b)
0109     error ("Octave:invalid-input-arg",
0110            "fminbnd: the lower bound cannot be greater than the upper one");
0111   endif
0112 
0113   if (ischar (fun))
0114     fun = str2func (fun);
0115   endif
0116 
0117   displ = optimget (options, "Display", "notify");
0118   funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
0119   outfcn = optimget (options, "OutputFcn");
0120   tolx = optimget (options, "TolX", 1e-4);
0121   maxiter = optimget (options, "MaxIter", 500);
0122   maxfev = optimget (options, "MaxFunEvals", 500);
0123 
0124   if (funvalchk)
0125     ## Replace fun with a guarded version.
0126     fun = @(x) guarded_eval (fun, x, varargin{:});
0127   endif
0128 
0129   ## The default exit flag if exceeded number of iterations.
0130   info = 0;
0131   niter = 0;
0132   nfev = 0;
0133 
0134   c = 0.5*(3 - sqrt (5));
0135   v = a + c*(b-a);
0136   w = x = v;
0137   e = 0;
0138   fv = fw = fval = fun (x, varargin{:});
0139   nfev += 1;
0140 
0141   if (isa (a, "single") || isa (b, "single") || isa (fval, "single"))
0142     sqrteps = eps ("single");
0143   else
0144     sqrteps = eps ("double");
0145   endif
0146 
0147   ## Only for display purposes.
0148   iter(1).funccount = nfev;
0149   iter(1).x = x;
0150   iter(1).fx = fval;
0151 
0152   while (niter < maxiter && nfev < maxfev)
0153     xm = 0.5*(a+b);
0154     ## FIXME: the golden section search can actually get closer than sqrt(eps)
0155     ## sometimes.  Sometimes not, it depends on the function.  This is the
0156     ## strategy from the Netlib code.  Something smarter would be good.
0157     tol = 2 * sqrteps * abs (x) + tolx / 3;
0158     if (abs (x - xm) <= (2*tol - 0.5*(b-a)))
0159       info = 1;
0160       break;
0161     endif
0162 
0163     if (abs (e) > tol)
0164       dogs = false;
0165       ## Try inverse parabolic step.
0166       iter(niter+1).procedure = "parabolic";
0167 
0168       r = (x - w)*(fval - fv);
0169       q = (x - v)*(fval - fw);
0170       p = (x - v)*q - (x - w)*r;
0171       q = 2*(q - r);
0172       p *= -sign (q);
0173       q = abs (q);
0174       r = e;
0175       e = d;
0176 
0177       if (abs (p) < abs (0.5*q*r) && p > q*(a-x) && p < q*(b-x))
0178         ## The parabolic step is acceptable.
0179         d = p / q;
0180         u = x + d;
0181 
0182         ## f must not be evaluated too close to ax or bx.
0183         if (min (u-a, b-u) < 2*tol)
0184           d = tol * (sign (xm - x) + (xm == x));
0185         endif
0186       else
0187         dogs = true;
0188       endif
0189     else
0190       dogs = true;
0191     endif
0192     if (dogs)
0193       ## Default to golden section step.
0194 
0195       ## WARNING: This is also the "initial" procedure following MATLAB
0196       ## nomenclature.  After the loop we'll fix the string for the first step.
0197       iter(niter+1).procedure = "golden";
0198 
0199       e = ifelse (x >= xm, a - x, b - x);
0200       d = c * e;
0201     endif
0202 
0203     ## f must not be evaluated too close to x.
0204     u = x + max (abs (d), tol) * (sign (d) + (d == 0));
0205     fu = fun (u, varargin{:});
0206 
0207     niter += 1;
0208 
0209     iter(niter).funccount = nfev++;
0210     iter(niter).x = u;
0211     iter(niter).fx = fu;
0212 
0213     ## update a, b, v, w, and x
0214 
0215     if (fu < fval)
0216       if (u < x)
0217         b = x;
0218       else
0219         a = x;
0220       endif
0221       v = w; fv = fw;
0222       w = x; fw = fval;
0223       x = u; fval = fu;
0224     else
0225       ## The following if-statement was originally executed even if fu == fval.
0226       if (u < x)
0227         a = u;
0228       else
0229         b = u;
0230       endif
0231       if (fu <= fw || w == x)
0232         v = w; fv = fw;
0233         w = u; fw = fu;
0234       elseif (fu <= fv || v == x || v == w)
0235         v = u;
0236         fv = fu;
0237       endif
0238     endif
0239 
0240     ## If there's an output function, use it now.
0241     if (! isempty (outfcn))
0242       optv.funccount = nfev;
0243       optv.fval = fval;
0244       optv.iteration = niter;
0245       if (outfcn (x, optv, "iter"))
0246         info = -1;
0247         break;
0248       endif
0249     endif
0250   endwhile
0251 
0252   ## Fix the first step procedure.
0253   iter(1).procedure = "initial";
0254 
0255   ## Handle the "Display" option
0256   switch (displ)
0257     case "iter"
0258       print_formatted_table (iter);
0259       print_exit_msg (info, struct ("TolX", tolx, "fx", fval));
0260     case "notify"
0261       if (info == 0)
0262         print_exit_msg (info, struct ("fx",fval));
0263       endif
0264     case "final"
0265       print_exit_msg (info, struct ("TolX", tolx, "fx", fval));
0266     case "off"
0267       "skip";
0268     otherwise
0269       warning ("fminbnd: unknown option for Display: '%s'", displ);
0270   endswitch
0271 
0272   output.iterations = niter;
0273   output.funcCount = nfev;
0274   output.algorithm = "golden section search, parabolic interpolation";
0275   output.bracket = [a, b];
0276   ## FIXME: bracketf possibly unavailable.
0277 
0278 endfunction
0279 
0280 ## A helper function that evaluates a function and checks for bad results.
0281 function fx = guarded_eval (fun, x)
0282 
0283   fx = fun (x);
0284   fx = fx(1);
0285   if (! isreal (fx))
0286     error ("Octave:fmindbnd:notreal", "fminbnd: non-real value encountered");
0287   elseif (isnan (fx))
0288     error ("Octave:fmindbnd:isnan", "fminbnd: NaN value encountered");
0289   endif
0290 
0291 endfunction
0292 
0293 ## A hack for printing a formatted table
0294 function print_formatted_table (table)
0295   printf ("\n Func-count     x          f(x)         Procedure\n");
0296   for row=table
0297     printf ("%5.5s        %7.7s    %8.8s\t%s\n",
0298             int2str (row.funccount), num2str (row.x,"%.5f"),
0299             num2str (row.fx,"%.6f"), row.procedure);
0300   endfor
0301   printf ("\n");
0302 endfunction
0303 
0304 ## Print either a success termination message or bad news
0305 function print_exit_msg (info, opt=struct ())
0306 
0307   printf ("");
0308   switch (info)
0309     case 1
0310       printf ("Optimization terminated:\n");
0311       printf (" the current x satisfies the termination criteria using OPTIONS.TolX of %e\n", opt.TolX);
0312     case 0
0313       printf ("Exiting: Maximum number of iterations has been exceeded\n");
0314       printf ("         - increase MaxIter option.\n");
0315       printf ("         Current function value: %.6f\n", opt.fx);
0316     case -1
0317       "FIXME"; # FIXME: what's the message MATLAB prints for this case?
0318     otherwise
0319       error ("fminbnd: internal error, info return code was %d", info);
0320   endswitch
0321   printf ("\n");
0322 
0323 endfunction
0324 
0325 
0326 %!shared opt0
0327 %! opt0 = optimset ("tolx", 0);
0328 %!assert (fminbnd (@cos, pi/2, 3*pi/2, opt0), pi, 10*sqrt (eps))
0329 %!assert (fminbnd (@(x) (x - 1e-3)^4, -1, 1, opt0), 1e-3, 10e-3*sqrt (eps))
0330 %!assert (fminbnd (@(x) abs (x-1e7), 0, 1e10, opt0), 1e7, 10e7*sqrt (eps))
0331 %!assert (fminbnd (@(x) x^2 + sin (2*pi*x), 0.4, 1, opt0), fzero (@(x) 2*x + 2*pi*cos (2*pi*x), [0.4, 1], opt0), sqrt (eps))
0332 %!assert (fminbnd (@(x) x > 0.3, 0, 1) < 0.3)
0333 %!assert (fminbnd (@(x) sin (x), 0, 0), 0, eps)
0334 
0335 %!error <lower bound cannot be greater> fminbnd (@(x) sin (x), 0, -pi)

Generated on Fri 30-Dec-2022 19:44:54 by m2html © 2005